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Abstract: We construct a microscopic hyperspectral imaging system to 
distinguish between normal and cancerous gastric cells. We study common 
transmission-spectra features that only emerge when the samples are dyed 
with hematoxylin and eosin (H&E) stain. Subsequently, we classify the 
obtained visible-range transmission spectra of the samples into three zones. 
Distinct features are observed in the spectral responses between the normal 
and cancerous cell nuclei in each zone, which depend on the pH level of the 
cell nucleus. Cancerous gastric cells are precisely identified according to 
these features. The average cancer-cell identification accuracy obtained 
with a backpropagation algorithm program trained with these features is 
95%. 
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1. Introduction 

Hyperspectral imaging (HSI) is a multidisciplinary nondestructive testing technology that can 
be used to simultaneously obtain spatial and spectral information. HSI is extensively used in 
areas such as agriculture, astronomy, and biomedical imaging. In the biomedical imaging 
context, several researches have focused on locating or identifying cancerous tissues/cells 
with the application of HSI technology [1–6]. Cancerous tissues or cells can be identified via 
various spectral imaging techniques based on a tissue/cell’s fluorescence spectrum [7], Raman 
spectrum [8], infrared spectrum [9], and transmission spectrum [10]. For all these spectral 
techniques, characteristic peaks or formations of the spectrum are generally used as the main 
criterion for cancer-cell identification. However, samples from different patients often exhibit 
different spectral responses due to individual biological variations, and even in the same 
sample, the spectra of cancerous cells exhibit small differences. Thus, spectral imaging of 
such cells may not show any fixed characteristic peak or formation, which undermines the test 
results. It is difficult to establish a standard with wide suitability for the identification. 
Consequently, extracting certain features from the sample spectra forms the key to improve 
the accuracy of cancer-cell identification. 

Previous studies have shown that there is an obvious contrast between the pH levels of 
normal and cancerous tissues. Warburg first hypothesized that the respiration of tumor cells is 
“damaged” in the sense that they preferentially metabolize via anaerobic pathways, producing 
large quantities of lactic acid [11]. With further advancements in cancer-cell detection and 
technology, it has now been established beyond doubt that at least certain tumors have a more 
acidic interstitial pH than that of normal tissues [12]. Moreover, because of chromatin 
proliferation, the pH levels of the cancerous cell nuclei are also different from those of normal 
cell nuclei. This significant pH difference can be used to identify cancerous cells [13]. 
However, it is very difficult to detect the pH level of cells directly. To overcome this problem, 
hematoxylin and eosin (H&E) stain is used to dye the samples. The effect of the H&E stain 
depends on the pH level of the “stained” biological structures, and therefore, structures with 
different pH values exhibit different colors. The slight change in the color resulting from the 
application of the H&E stain cannot be observed by the naked eye; however, it can be 
distinguished by studying the transmission spectrum of the sample in question. Because there 
is a fixed distinction between the pH levels of normal and cancerous cells, we can conclude 
there must also be a fixed distinction between the transmission spectra of normal and 
cancerous cells. 

In this study, H&E-stained normal and cancerous gastric tissues from eight different 
patients were used as test samples, and the transmission spectra of normal and cancerous cell 
nuclei were obtained via hyperspectral imaging. By analyzing the obtained spectra, we 
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observed that there are some certain common features that could be used to distinguish 
between the normal and cancerous cell nuclei. Based on our analysis, we classified the 
transmission spectra of these different samples in the visible region into three zones: in zone 1 
(in the approximate wavelength range of 450-490 nm), the transmittance of the normal and 
cancerous nuclei were nearly identical; in zone 2 (~490-550 nm), the transmittance of the 
normal nuclei was higher than that of the cancerous nuclei; in zone 3 (~550-700 nm), the 
transmittance of cancerous nuclei was higher than that of normal nuclei. These distinctions 
are relative to the pH level of the cell nucleus. As a classical method for cancer-cell 
identification [14–16], we applied a backpropagation algorithm program to analyze the data. 
The statistical results indicated that the accuracy of cancer-cell identification with a program 
that is trained using these features is considerably higher than that trained using the entire 
spectra. Significantly, certain cancerous cells that spread to normal tissues that are normally 
indistinguishable by their morphological features are easily distinguished through the 
abovementioned spectral features. 

2. Test system and method 

The architecture of our experimental setup is shown in Fig. 1. The setup consisted of 
hardware and software components. 

 

Fig. 1. (A) Architecture of hyperspectral microscopic imaging system and (B) spectral 
scanning process. 

The system hardware comprised a 2/3-inch CCD (SONY ICX285 ExView HAD) sensor 
with an image size of 1360 × 1024 pixels, zooming lenses with magnifications ranging from 1 
× to 7 × , a liquid crystal tunable filter (LCTF, CRI INC.) covering the spectral range of 420-
720 nm, an aperture for the laser input, a dichroic mirror to separate the laser and optical 
signals, a 10 × infinity-corrected imaging microscope objective (Olympus INC.) with a large 
numerical aperture (N.A. = 0.25), and a white LED light source. The details of the optical 
characteristic of white LED light source and dichroic are shown in Fig. 2. The software of the 
system was used to control the gain factor, exposure time, sweep range, and step length. This 
system can obtain transmission spectrum information when the sample is illuminated by the 
white LED light source and obtain fluorescence spectrum information when the sample is 
excited by the laser. However, only the transmission spectrum was used for identifying the 
normal/cancerous cells in this experiment and no laser source is needed. 
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Fig. 2. The emission spectrum of the white light LED (A) and the transmission and reflectance 
of the dichroic with un-polarized light (B). 

As regards the principles underlying the imaging, when light from the LED light source is 
focused on the sample, a portion of this light is scattered or absorbed, while another portion 
enters the system. This light is filtered by the LCTF and imaged by the CCD. The result is a 
bright field image in the spectral range of 420-720 nm. The transmission rate is subsequently 
obtained by comparing the light intensities of the background and the sample. 

The transmission rate can be calculated by the formula below: 

 sample

background

I
T

I
=  (1) 

Here, T denotes the transmittance, and Isample and Ibackgrouand denote the light intensities of 
the sample pixel and background pixel, respectively. Because the gray values are proportional 
to the light intensity, they can be used to replace the intensity values in the calculation of the 
transmittance. In this experiment, we chose a point in the blank area (without cells and other 
tissues) of each slide to test the intensity of the background at every wavelength by taking 
hyperspectral images. 

3. Results and analysis 

Figure 3 shows a microscopic image of the gastric tumor tissues. From the image, we note 
that the cancerous cells exhibit certain characteristic formations with various geometrical and 
morphological features, which are called tumor nests (TNs). Such cells exhibit a close 
structural consistency and functional coordination with the surrounding normal tissues [17]. 
In general, the nuclei of the cancerous cells in the tumor nests are larger than those of normal 
cells, and they can be easily identified. However, certain individual cancerous cells that 
spread to the surrounding tissues are similar to the normal cells. These cannot be easily 
distinguished by their morphological features. Thus, further details such as the spectral 
information are required for the identification of such cells. 
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Fig. 3. Microscopic image of tumor nests in gastric tissues. 

As previously mentioned, eight samples from different patients were used for the test. The 
spectral information of 50 normal cells and 50 cancerous cells were collected by the HSI 
system. In this experiment, the cells with large nucleus in tumor nest were determined as 
cancerous cells. The cells in the normal tissue, far away from the tumor nest, with relatively 
small nucleus were determined as normal cells. To be more precise in the analysis, the cells 
whose spectral characteristics are quite different from other cells of the same type in the same 
sample would be removed from the selection. The gain factor, the excitation power of the 
light source and the exposure time of CCD were kept constant during these measurements, 
and the spectral resolution that was used for acquiring data was 5 nm. One set of the 
transmission spectra of the normal and cancerous cell nuclei is shown in Fig. 4. Because of 
individual biological variations in the patient samples, the transmission spectra obtained from 
different samples are not exactly identical. Thus, it is difficult to determine certain common 
formations or characteristic peaks in terms of a broad clinical-application range using these 
data. In fact, even in the same sample, the transmission spectra of normal and cancerous cell 
nuclei exhibit small differences. This discrepancy is an inherent property of biological 
organisms, which cannot be avoided. 

 

Fig. 4. Transmission spectra of (A) normal cells and (B) cancerous cells in gastric tissues from 
eight different samples. 

#234192 - $15.00 USD Received 6 Feb 2015; revised 26 Feb 2015; accepted 26 Feb 2015; published 4 Mar 2015 
(C) 2015 OSA 1 Apr 2015 | Vol. 6, No. 4 | DOI:10.1364/BOE.6.001135 | BIOMEDICAL OPTICS EXPRESS 1139 



In this study, we used the summation of the Euclidean distance between two spectra to 
describe the spectral differences between samples. This distance is expressed below: 

 2
1 2

1

( )
n

k k
k

d T T
=

= −  (2) 

Here, T1k and T2k denote the transmittances of any two given cells at each wavelength, and 
n denotes the total number of wavelengths. We used this formula to calculate the parameters 
dcc (average spectral differentiation between two cancerous cells), dnn (average spectral 
differentiation between two normal cells), and dnc (average spectral differentiation between 
normal and cancerous cells) for each sample. Table 1 lists the values of these parameters for 
the eight samples. 

Table 1. Differentiation in spectral differentiation parameters calculated from the entire 
spectrum between cells in each of eight samples 

 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

dcc 2.91 2.54 2.95 2.96 2.15 2.97 2.85 2.48 

dnn 3.02 2.03 2.84 2.93 2.67 2.75 2.74 2.39 

dnc 7.23 6.95 6.69 6.31 6.83 6.03 6.43 6.38 

The results indicate that there are certain significant differences between the transmission 
spectra of normal and cancerous cell nuclei (dnn and dcc < dnc) in every sample. These 
differences arise due to the difference in pH levels between the normal and cancerous cell 
nuclei. 

As mentioned previously, we used H&E to stain the samples. Hemalum in the H&E stain 
colors the basophilic structure (nuclei of cells) blue, and eosin Y colors eosinophilic structures 
in various shades of red, pink, and orange. The effect of the stain depends on the pH level of 
the sample. The pH levels of the nuclei of normal and cancerous cells are different, and 
therefore, their color/transmission spectra are different. As a characteristic of cancerous cells, 
a change in the pH level also appears in the cancerous cells that spread to the normal tissues. 
If we can find out some common features from these distinctions, we can use it to identify the 
cancerous cells. 

Based on the results of our comparative analysis, we classified the transmission spectra of 
samples in the visible region into three zones, shown as Fig. 5: in zone 1, the transmittance of 
normal and cancerous cells nuclei were observed to be nearly identical (average difference of 
transmittance <0.07); in zone 2, the transmittance of the normal cell nuclei was higher than 
that of the cancerous cell nuclei (average difference of transmittance >0.08); in zone 3, the 
transmittance of the cancerous cell nuclei was higher than that of normal cell nuclei (average 
difference of transmittance >0.1). We remark here that although the zone sizes are not exactly 
identical, the changes in the spectral trends are consistent for all similar zones. In fact, the 
tumor also exhibits similar spectral features in macroscopic environments. For example, 
Guolan Lu et al. used the HSI system for the in vivo detection of cancer in the head and neck, 
and in their study, similar distinctions between the spectra of normal and cancerous tissues 
were observed in the test results [18]. However, these features have not thus far been 
highlighted or analyzed. 
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Fig. 5. Microscopic images of cancerous gastric tissues and transmission spectra of normal and 
cancerous cell nuclei from three different samples. The three different zones in the visible 
region are identified by different colors. 

Moreover, these features were not observed in a comparison study between cells of the 
same type in the same sample, shown as Fig. 6. This result indicates that the specificity of 
these features is relatively high and that they can be used as a common criterion to accurately 
identify cancerous cells. 
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Fig. 6. Comparison between two cells of the same type in the same sample. (A) Transmission 
spectra of two normal cell nuclei and (B) transmission spectra of two cancerous cell nuclei. 

For analyzing these features, a standard is required to define the “start” and “end” 
wavelengths (or the range) of each zone. In this experiment, the start wavelength of zone 1 
and end wavelength of zone 3 were set to be 450 nm and 700 nm, respectively. The start 
wavelength of zone 2 (end wavelength of zone 1) and start wavelength of zone 3 (end 
wavelength of zone 2) were chosen as the minimum wavelengths that satisfied the following 
conditions, which is set up based on the extensive testing: 

(1) Start wavelength of zone 2 2sλ : 

 
2 2

2 2
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2 2
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(2) Start wavelength of zone 3 3sλ : 
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Here, normalTλ − and cancerousTλ −  denote the transmittances of normal and cancerous cell 
nuclei, respectively, and S denotes the step length of the spectral scanning. Here, we remark 
that if the distinctions of the spectra between an unknown cell and a verified 
normal/cancerous cell cannot be divided into these three zones, the unknown cell should be 
identified as a normal/cancerous cell and vice versa. 

Moreover, if the distinctions of the spectra between two cells can be divided into three 
zones, the features of the distinctions can be described by the zone size (L) and average 
difference in transmittance (ADT) between the normal and cancerous cell nuclei in each zone 
as: 

 end startL
S

λ λ−
=  (3) 

 1 2

1 end

start
ADT T T

L

λ
λ λλ − −= −  (4) 

Here, startλ  and endλ  denote the start and end wavelengths, respectively, of a zone, and 1Tλ −  

and 2Tλ − denote the transmittances of two given cells. 
We utilized a MATLAB program based on the backpropagation algorithm to analyze the 

relationship between the transmission spectra (input) and types of cells (output). Here, it is to 

#234192 - $15.00 USD Received 6 Feb 2015; revised 26 Feb 2015; accepted 26 Feb 2015; published 4 Mar 2015 
(C) 2015 OSA 1 Apr 2015 | Vol. 6, No. 4 | DOI:10.1364/BOE.6.001135 | BIOMEDICAL OPTICS EXPRESS 1142 



be noted that we can use either the entire spectra to train the program or the common features 
(zone number, zone side, and ADT) of the distinctions of the spectra to train the program. 

For this experiment, we used fifty groups of data and another ten groups of data from each 
sample as the training data and test data, respectively. When the program was trained using 
the entire spectra, the type of test cell was identified by its entire transmission spectra. When 
the program was trained using the common features, the type of test cell was identified by the 
zone number, zone size, and ADT between the test cell and a verified cancerous cell. Both 
these methods were implemented, and the accuracy of identification in each case was 
calculated. 

The accuracy of identification is defined as below: 

 100%ture

total

N
Accuracy

N
= ×  (5) 

This accuracy is defined as the ratio of the number of correctly labeled normal or 
cancerous cells (Nture) to the total number of normal or cancerous cells in the test group 
(Ntotal). From the entries in Table 2, we note that the accuracy of the method based on the 
common features is higher due to the lower dimensionality of the problem [19]. 

Table 2. Accuracy of identification cancerous and normal cells in different samples 

Sample No. 

Accuracy
(program trained using the entire spectra) 

Accuracy 
(program trained using the common features) 

Cancerous cells Normal cells Cancerous cells Normal cells 

1 53% 62% 97% 93% 

2 46% 60% 98% 90% 

3 47% 59% 95% 96% 

4 69% 56% 92% 92% 

5 65% 62% 92% 95% 

6 54% 60% 93% 92% 

7 73% 58% 97% 91% 

8 46% 59% 93% 94% 

Average value 61% 59% 95% 93% 

Because the common-feature-based method has high accuracy and wider applicability, we 
used the method to locate cancerous cells that spread to normal tissues. Although the normal 
cells and cancerous cells that spread to normal tissues have a similar morphology, the 
cancerous cells still can be distinguished by distinctions in their spectral responses, as shown 
in Fig. 7. 
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Fig. 7. Identification of cancerous cells that spread to normal tissues. The label A indicates a 
normal cell, B a cancerous cell that spreads to the normal tissues, and C a cancerous cell in the 
tumor nest. While cells A and B have similar morphological features, they exhibit different 
spectral responses. 

4. Conclusion 

The accurate identification of cancerous cells forms a very important aspect of biomedical 
image. Therefore, in this study, we determined certain features that were consistent over a 
wide range of variations in cells (even considering individual biological variations), and we 
used these features for the identification of cancerous gastric cells to avoid the detrimental 
effect of individual biological variations in samples. Our results demonstrate that our feature-
based method can enable the accurate and quantitative detection of cancerous gastric cells. 
With the use of these features, the average accuracy of the identification of cancerous cells 
was 95%, and the highest accuracy was approximately 98%. Although the sizes or numbers of 
the classified spectral zones may not be exactly the same, we believe that our method that is 
based on classifying the spectral wavelength region into several zones and identifying 
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cancerous cells by the distinctions in the transmittance features in each zone is applicable to 
the detection of various cancers. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (61475067, 
11404332), the Technology Innovation Foundation of Educational Commission of 
Guangdong Province (2013KJCX0022) and the Project of Science & Technology of Yuexiu 
District, Guangzhou, China (2013-GX-016). 

 

#234192 - $15.00 USD Received 6 Feb 2015; revised 26 Feb 2015; accepted 26 Feb 2015; published 4 Mar 2015 
(C) 2015 OSA 1 Apr 2015 | Vol. 6, No. 4 | DOI:10.1364/BOE.6.001135 | BIOMEDICAL OPTICS EXPRESS 1145 




